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Abstract. Semantic segmentation is a key component in eye- and gaze-
tracking for virtual reality (VR) and augmented reality (AR) applica-
tions. While it is a well-studied computer vision problem, most state-of-
the-art models require large amounts of labeled data, which is limited
in this specific domain. An additional consideration in eye tracking is
the capacity for real-time predictions, necessary for responsive AR/VR
interfaces. In this work, we propose EyeSeg, an encoder-decoder archi-
tecture designed for accurate pixel-wise few-shot semantic segmentation
with limited annotated data. We report results from the OpenEDS2020
Challenge, yielding a 94.5% mean Intersection Over Union (mIOU) score,
which is a 10.5% score increase over the baseline approach. The experi-
mental results demonstrate state-of-the-art performance while preserving
a low latency framework. Source code is available: http://www.cs.utsa.edu/ fer-
nandez/segmentation.html
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1 Introduction

The concept of foveated rendering has significant potential to improve upon
the visual and computational performance of VR/AR applications. A critical
underlying component of this technique is eye-tracking, which often relies on
semantic segmentation - accurately and efficiently identifying regions of the eye.

Supervised training of neural networks for these segmentation tasks often
requires extremely labor-intensive annotations as well as a relatively high vol-
ume of samples. In addition, these vision models are intended for embedded
systems, such as head-mounted displays (HMD), and therefore we must consider
an additional constraint of computational complexity in terms of the number of
trainable or learned parameters.

Several efficient approaches to semantic segmentation for eye tracking on
HMDs have shown the ability to reduce model complexity and demonstrate
accurate performance in terms of mean Intersection Over Union (mIOU) [2, 3,
8, 11]. However, in this work, we additionally focus on the limited availability of
large, fully-labeled datasets for this task. While VR/AR technologies continue
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to increase in popularity, diversity in implementations reduces the consistency of
such available and labeled data for evaluating deep learning models. We therefore
explore the efficacy of existing models on datasets with limited amount of labeled
data, as defined in the OpenEDS 2020 Challenge for Semantic Segmentation [9],
and find a reduction in this measure of performance.

In response, we propose a new encoder-decoder framework, EyeSeg, which
is designed for training where there is scarcity of annotated data as well as
optimized for embedded systems. Our architecture improves on related state-of-
the-art approaches [10, 11] in four main ways.

First, it improves upon the constraint of computational complexity by reduc-
ing the number of trainable parameters in our framework.

Second, it leverages a customized combined loss function of the standard
categorical cross entropy (CCE) and generalised dice loss (GDL)[13].

Third, it applies well-established targeted data manipulation and augmenta-
tion techniques which have been demonstrated for their performance optimiza-
tion [3].

Finally, it will utilize two different training methods to leverage capabilities
of semi-supervised learning and identify the performance gain from a standard
supervised learning approach.

In evaluation of our proposed approach, we measure the performance of Eye-
Seg against the Open Eye Dataset [9] for the 2020 Semantic Segmentation Chal-
lenge. The performance metric chosen for this challenge is mIOU. Additionally,
we compare model complexity, as defined in the previous OpenEDS 2019 chal-
lenge [6], in order to thoroughly evaluate and compare with existing approaches.
Our method demonstrates a significant improvement over the baseline model,
and we additionally compare our proposed method with current state-of-the-art
models for eye segmentation.

2 Related Works

As the availability of high-resolution digital media datasets continues to increase,
research in segmentation algorithms has kept pace through strategic optimization
and deep neural networks. Building on convolutional neural networks (CNNs)
and fully convolutional networks (FCNs), segmentation architectures have ben-
efited from techniques in pooling, filtering, and dilation [16]. In this section,
related approaches to semantic segmentation are respectively described for ac-
curate pixel-wise classification, complexity reduction methods, and imbalanced
class representations.

Encoder-Decoder Frameworks. Convolutional encoder-decoder frameworks
have been widely used for robust feature extraction in a range of computer vision
applications.

SegNet [1] utilized this framework to improve upon scene understanding with
a non-linear upsampling augmentation for FCNs. Chen et al[5] employed the
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DeepLab[4] atrous convolution module, a dilation to further increase the perfor-
mance of an encoder-decoder framework through exponentially larger receptive
fields without an increased computational cost. UNet[12] introduced a patterned
encoder-decoder design, containing residual connections in order to maintain spa-
tial information from earlier layers within the encoder. A demonstrable trend in
segmentation is to leverage a general encoder-decoder design for increasing per-
formance and decreasing parameterization.

Lightweight Frameworks. The emerging technologies such as AR/VR or au-
tonomous vehicles have shown that model complexity is a key factor in the
application of segmentation models in real-world environments. ENet [10] im-
proved upon model complexity towards real-time segmentation for autonomous
vehicles. More recently, frameworks have been presented from OpenEDS chal-
lenge that improved in both computational complexity and performance capa-
bilities towards AR/VR applications[2, 3, 8, 11]. These frameworks optimize for
the number of trainable parameters within a deep neural network.

Semi-Supervised and Unsupervised Training. Domain adaptation and
self-training have been widely adopted as techniques for a structured method
of training with data that has a low amount of labeled samples, and this has
been successful in many different domains, including synthetic to real domain
adaptation for vehicle video sequences [14]. Recent work on self-training [17]
that utilized a student-teacher format demonstrated state-of-the-art performance
with a fast training schedule. Both of these works [14, 17] used a type of entropy
based approximation for determining quality or confidence of inference.

3 EyeSeg Architecture

Our primary aim is to improve the performance and efficiency of semantic seg-
mentation, especially for situations where there is limited availability of labeled
data. In this section, we outline our proposed neural network architecture and
describe its total loss function.

3.1 Network Architecture

Figure 1 provides a high-level view of the composition of EyeSeg, an encoder-
decoder architecture. EyeSeg consists of 4 encoder blocks which store feature
maps learned at each step prior to the down sampling portion connecting to
the subsequent encoder blocks. The decoder portion of EyeSeg upsamples in a
mirrored or patterned fashion with respect to the encoder and utilizes the store
feature maps from the encoding as an alternative path to sustain simple high
level features.

Recent approaches[3, 11] specifically for eye-tracking have shown an increase
in accuracy from applying different mechanisms to an encoder-decoder.
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Fig. 1. Visualization of the proposed framework (high-level view). From left: Input
image 640× 640 in gray scale format through 4×Encoder blocks & 4×Decoder blocks
to a predicted mask of background, sclera, iris, and pupil.

Similarly, EyeSeg employs two of these components, residual connections
and dilated convolutional layers, where these different components combined
substantially increase the performance without impacting computational com-
plexity drastically. However, both the encoder and decoder proposed are distinct
variants from existing architectures [3, 11] in both size and structure. Table 1
outlines the framework of EyeSeg in more detail, breaking down the internal
blocks, output sizes, and types within layers.

3.2 Encoder

Each encoder block consists of 4 convolutional layers, that are paired with Para-
metric rectified Linear Unit (PReLU) [7] and Batch Normalization (BN) layers
per convolution. There are 2 variants to the basic structure of an encoder block,
which modify one of the convolutional layers. The variant will be a dilated con-
volutional layer or a pooling layer. Finally, our encoder block utilizes average
pooling layers for a more accurate localization than what is provided in max
pooling layers. A single encoder block is visualized in Figure 2.

3.3 Decoder

As illustrated in Figure 2, the decoder blocks each have 4 primary components
that consists of convolutional, activation, upsampling, and normalization lay-
ers. Each convolutional layer is paired with a Rectified Linear Unit (ReLU). A
convolutional transpose layer is leveraged for the task of upsampling.

With an emphasis in reduction of computational complexity, we forgo the
additional BN layers commonly incorporated into the decoder blocks at this
stage [11].

In order to sustain spatial information from earlier layers, we implemented
residual connections pairing the appropriate encoder blocks to the respective
decoder blocks.
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Fig. 2. From top: A flowchart of a single encoder block where the dotted line represents
conditionally applicable layers, a single decoder block where the previous feature map
shown in red is a residual connection.

3.4 Loss Function

With motivation from RITNet [3], our implementation utilizes a customized total
loss function which can be represented in 2 parts: cross entropy and generalised
dice loss. The total loss function for our proposed method is as follows:

Lloss = Lcce + Lgdl (1)

Lcce = − 1

N
Σl=1Σ

N

n=1rln log(pln) (2)

Lgdl = 1− 2
Σl=1wlΣ

N
n=1rlnpln

Σl=1wlΣN
n=1rln + pln

(3)

where Lcce is a standard implementation of categorical cross entropy and Lgdl

is an implementation of a generalized dice loss function [13] for imbalanced
class features. The aim of this combined loss function is to mitigate the over-
representation of one or many class features l within each sample n, comparing
the ground truth (target) r with the predicted values p.

4 Experiments and Results

4.1 openEDS 2020 Challenge Data

In this work, the eye segmentation subset of the Open Eye Dataset 2020 [9] is
used for evaluation. This dataset consists of 29,476 images, from 74 different
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Fig. 3. Sampled images from the OpenEDS2020[9] dataset. From left column: Image
with reflection and participants eye partially open, participants eye occluded by the
eye lid, participants eye fully open.

participants, ranging in ethnicity, gender, eye color, age, and accessories (such
as make-up and glasses). Shown in Figure 3, the dataset has variations of images
that allow for a range of different real world challenges for applications of eye
tracking including participants with accessories, nearly visible eyes, partially oc-
cluded eyes, or fully observable eyes. Further, the images were from 200 different
sequences of 30 second video recordings from 74 participants. The sequences of
recorded sessions contain only a few annotations, where approximately 5% of the
entire dataset contained annotations. Labels provided in the form of pixel-level
masks denoting eye region, iris, and pupil were manually annotated by two or
more individuals. Overall, the labeled portion of this dataset consists of only
2,605 annotated images. For the purposes of challenge, a hidden test set is made
unavailable, comprised of five of the annotated images per sequence. This leaves
only 1605 total annotated images for our training and validation purposes.

4.2 Data Augmentation

In order to account for the variety of challenging categories within the dataset
viewed in Figure 3, we propose two approaches to reduce the most noticeable
undesirable properties of the original images. First, we utilize a technique to
amplify the contrast of the image to improve upon low light areas of the original
image. Second, we apply image denoising techniques to smooth the prominent re-
flections caused by participants wearing accessories. Additionally, we performed
data manipulation techniques such as horizontal flipped or mirrored samples in
order to combat the detriment to training on sparse amount of data. The process
of both denoising techniques and contrast amplification are shown in Figure 4.

Adaptive Histogram Equalization. Contrast Limited Adaptive Histogram
Equalization (CLAHE) [15] is an enhancement method for improving the quality
of images and video where visibility is less than satisfactory. A key component
to CLAHE is the clipped or limited range of its visibility enhancement, whereas
the standard AHE algorithm will allow for overly amplified images to occur and
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Fig. 4. This figure shows the application of both CLAHE and noise reduction from two
different participants where the top row is a participant with reflection from glasses as
well as low light and the bottom row is a participant with partial reflection. From Left:
Original image, noise reduction applied, CLAHE applied, and fully pre-processed with
both CLAHE and noise reduction.

presents the problem of trading off low light samples with over exposed samples.
Our proposed EyeSeg utilizes this CLAHE enhancement to employ a contrast
amplification to the images in order to achieve more visibility of class features.

Image Noise Reduction. The front facing sensors of AR/VR devices such as
HMDs usually are accompanied with both visible and infrared light to illuminate
the participants eye for more accurate eye-tracking. The trade-off with deploying
these types of emitters will result in glare and reflections from the participants
eye itself and additional noise will be caused if the participant is wearing glasses.
We use Gaussian filtering as a noise reduction method to provide more clear
representations of the images.

4.3 Training

The lack of manually annotated images causes a significant detriment to the
capabilities of the traditional methods of training. In this section, we discuss
the two experimental training methods applied to EyeSeg. Initially, the 1,605
annotated images are utilized in a supervised learning environment. Second, we
describe the semi-supervised training method applied.

Supervised Training. We trained EyeSeg with an ADAM optimizer at a initial
learning rate of 1e-3, and is lowered to 1e-4 once there is a plateau. The training
process is terminated within 200 epochs. The training and inference of this model
were performed on the padded image size of 640× 640. Our network was tested
on the Open Eye Dataset [9] hidden test samples achieving a mIOU score of
0.945 shown in Table 2. Additionally, we trained segmentation models[3, 11] from
OpenEDS 2019 Challenge [6] using the same training method to encompass a
more robust comparison of EyeSeg.
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Semi-Supervised Training. Utilizing the entire dataset, We trained EyeSeg
with pseudo labels generated for the portion of the dataset without annotations.
Our proposed semi-supervised method aims to minimize entropy to ensure qual-
ity pseudo labels similar to recent works [17, 14]. Additionally, we incorporated
the 1,605 annotated images from the Open Eye Dataset [9]. The pseudo labels
generated were utilized only whenever the entropy of each pixel-wise classifica-
tion demonstrated high confidence or low entropy. Entropy for a single sample
is written as follows:

Eentropy = −ΣN

i,j=0Σl=1pijl log(pijl), (4)

where Eentropy will demonstrate the confidence of the pseudo label determined by
evaluating each pixel at ij until Nth pixel for each label or class l. Entropy will be
low if only one class per ij is classified with high confidence from inference. Our
network achieved a marginal score increase of 0.06 over the supervised learning
method to a total score of 0.951. However, due to a lack of accessibility to the
Open Eye Dataset [9] hidden test samples we could not accurately compare this
iteration to the previous supervised method.

4.4 Results

The 2020 OpenEDS Semantic Segmentation Challenge includes a leaderboard,
ranking submissions by mIOU score. A baseline encoder-decoder network [9] was
provided, which was loosely based upon SegNet[1], an encoder-decoder architec-
ture with relatively few parameters and a base score of 0.84. Additional results
are provided in Table 2, including mIOU, but also breaking down the perfor-
mance across the 4 semantic categories and including the number of parameters
in the models. Related works in this table include top-performing models from
the 2019 OpenEDS challenge, RITNet[3] and MinENet[11]. EyeSeg demonstrates
a higher mIOU score, consistently improving across the background, sclera, iris,
and pupil semantic categories. While the number of parameters in EyeSeg are
streamlined in comparison with related works, the baseline model was signifi-
cantly smaller than our proposed architecture. This trade-off provides our model
with improved performance, but we will discuss further plans to reduce size in
the following section.

A visual evaluation of the effectiveness of EyeSeg is shown in Figures 5 and 6.
In Figure 5, images from the dataset are shown in the first column, followed by
the ground truth annotation, and our predicted segmentation. Despite reflections
within the eye, partial occlusion by eyelid, and differences in lighting, the EyeSeg
predictions are fairly close to the ground truth. In comparison, Figure 6 looks at
challenging edge cases in the dataset - reflections from glasses, severe occlusion
by eyelid, and varied lighting. In these instances, the EyeSeg predictions are
often close, some degradation exists in the confidence of boundaries, such as in
the left side of the final image.
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5 Conclusion

In this work, we introduce EyeSeg, a generalized method for few-shot segmen-
tation with the use of an efficient encoder-decoder and customized total loss
function. We apply EyeSeg to the Open Eye Dataset[9], a challenge for semantic
segmentation of eye regions in images taken for VR/AR displays. Our method
uses a combined loss function to reduce the impact of imbalanced class features
often prevalent in real-world datasets. Additionally, several data augmentation
techniques are applied to mitigate the limited amount of labeled data, as well
as to accommodate for challenging categories of images within the dataset, such
as makeup, glasses, and closed eyelids.

We demonstrate performance of EyeSeg against the baseline implementation
on the challenge [9], outperforming by 10.5% mIOU. We also compare with recent
related approaches, achieving state-of-the-art performance while maintaining a
lightweight design for the capability of real-world use in AR/VR environments.

In future work, we aim to further optimize EyeSeg by reducing the number of
parameters, increasing performance per mIOU, and addressing shortcomings on
the outlier data, identified in Figure 6. Since the image data is a sequence of video
frames an application of memory units such as an LSTM could have a positive
impact on the accuracy of EyeSeg. While our data augmentation methods are
beneficial to the performance of EyeSeg in low light or noisy environments, it is
not entirely solved and could be addressed from the application of a memory unit
or additional pre-processing techniques. We plan apply our approach to further
domains and data which contains varying levels of class feature imbalances, and
limited labeled data.
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Name Type Output Size

input 16× 640× 640

Encode Block 1.0 32× 640× 640
Encode Block 1.1 32× 640× 640
Encode Block 1.2 32× 640× 640
Encode Block 1.3 downsampling 32× 320× 320

Encode Block 2.0 32× 320× 320
Encode Block 2.1 dilated (2×2) 32× 320× 320
Encode Block 2.2 dilated (4×4) 32× 320× 320
Encode Block 2.3 downsampling 32× 160× 160

Encode Block 3.0 32× 160× 160
Encode Block 3.1 dilated (2×2) 32× 160× 160
Encode Block 3.2 dilated (4×4) 32× 160× 160
Encode Block 3.3 downsampling 32× 80× 80

Encode Block 4.0 32× 80× 80
Encode Block 4.1 32× 80× 80
Encode Block 4.2 32× 80× 80
Encode Block 4.3 32× 80× 80

Decode Block 1.0 32× 80× 80
Decode Block 1.1 32× 80× 80
Decode Block 1.2 32× 80× 80
Decode Block 1.3 upsampling 32× 160× 160

Decode Block 2.0 residual connection 64× 160× 160
Decode Block 2.1 32× 160× 160
Decode Block 2.2 32× 160× 160
Decode Block 2.3 upsampling 32× 320× 320

Decode Block 3.0 residual connection 64× 320× 320
Decode Block 3.1 32× 320× 320
Decode Block 3.2 32× 320× 320
Decode Block 3.3 upsampling 32× 640× 640

Decode Block 4.0 residual connection 64× 640× 640
Decode Block 4.1 32× 640× 640
Decode Block 4.2 32× 640× 640
Decode Block 4.3 32× 640× 640

Output 4× 640× 640
Table 1. Architecture of our proposed method. Output sizes are provided for input
size of 640× 640× 1.

mIOU background sclera iris pupil #parameters

Baseline[9] 0.84 0.971 0.674 0.835 0.835 40k
MinENet[11] 0.91 0.99 0.83 0.93 0.89 222k
RITNet[3] 0.93 0.99 0.87 0.95 0.915 250k
EyeSeg 0.945 0.99 0.89 0.95 0.95 190k

Table 2. Comparison of semantic segmentation approaches on the OpenEDS dataset,
as of submission. The Baseline is the model provided in the OpenEDS Semantic Seg-
mentation Challenge 2020.
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Fig. 5. Results from EyeSeg without any samples that include low visibility or reflec-
tions. From Left: Original input image, Ground truth or target value, predictions.
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Fig. 6. Results from EyeSeg that posed more of a challenge including low light and
reflections. From Left: Original input image, Ground truth or target value, predictions.
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