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Abstract. Domain adaptation (DA) has been widely investigated as a
framework to alleviate the laborious task of data annotation for image
segmentation. Most DA investigations operate under the unsupervised
domain adaptation (UDA) setting, where the modeler has access to a
large cohort of source domain labeled data and target domain data with
no annotations. UDA techniques exhibit poor performance when the do-
main gap, i.e., the distribution overlap between the data in source and
target domain is large. We hypothesize that the DA performance gap
can be improved with the availability of a small subset of labeled target
domain data. In this paper, we systematically investigate the impact of
varying amounts of labeled target domain data on the performance gap
for DA. We specifically focus on the problem of segmenting eye-regions
from eye images collected using two different head mounted display sys-
tems. Source domain is comprised of 12,759 eye images with annotations
and target domain is comprised of 4,629 images with varying amounts
of annotations. Experiments are performed to compare the impact on
DA performance gap under three schemes: unsupervised (UDA), super-
vised (SDA) and semi-supervised (SSDA) domain adaptation. We evalu-
ate these schemes by measuring the mean intersection-over-union (mIoU)
metric. Using only 200 samples of labeled target data under SDA and
SSDA schemes, we show an improvement in mIoU of 5.4% and 6.6%
respectively, over mIoU of 81.7% under UDA. By using all available la-
beled target data, models trained under SSDA achieve a competitive
mIoU score of 89.8%. Overall, we conclude that availability of a small
subset of target domain data with annotations can substantially improve
DA performance.
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1 Introduction

Semantic segmentation is an important problem in computer vision where the
objective is to assign labels to each pixel in an image. In recent years, supervised
learning methods using convolutional neural networks (CNNs) have enabled sig-
nificant improvements in the development of models for semantic segmenta-
tion [1, 15, 24]. However, supervised training of CNNs require a large amount
of images with pixel-wise annotations, which, if done manually is time consum-
ing, non-scalable and label inefficient. To ease the problem of pixel-wise image
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annotation, unsupervised domain adaptation (UDA) methods have been widely
studied. UDA methods attempt to align the distribution of features from a differ-
ent but related, source domain data, which also contains annotations, to target
domain data, where no annotations are available [5, 31].

UDA predominantly uses adversarial training framework to train models that
retain good performance for semantic segmentation on source domain data, while
at the same time attempting to reduce the discrepancy in feature distribution
in both domains. In doing so the hope is that the trained model can semanti-
cally segment the target domain data even in the absence of any labeled data.
However, UDA have been shown to fail to learn discriminative class boundaries
for target domain data. Furthermore, UDA also fails to train models that can
generalize well on the target domain data [25, 27, 37]. In addition, the setting
under which UDA training is appropriate, may not be suitable for real world
scenarios where we also have annotations for a subset of target domain data. In
this scenario, the following questions are more relevant:

– Given a fixed annotation budget, how much data need to be labeled in order
to reach a reasonable performance on the target domain?

– How to optimally utilize the unlabeled data in target domain?

We focus on answering these questions in the eye-region semantic segmenta-
tion research area with a long-term goal of increasing the quality of estimated
eye gaze data. Obtained eye tracking quality is critical to many applications
in VR/AR such as foveated rendering, intent inference, health assessment, and
direct gaze interaction. Specifically, in this work, as a first step toward this
goal, we conduct experiments to systematically investigate the impact on seg-
mentation performance for varying levels of target data annotations. Three do-
main adaptation frameworks are investigated: unsupervised domain adaptation
(UDA), where large numbers of target images without target annotations are
available [5]; supervised domain adaptation (SDA), where a small number of
labeled target images are available [27] and semi-supervised domain adaptation
(SSDA), where in addition to large numbers of target images without annota-
tions, a small number of target images with annotations are available [28]. We
conduct a series of experiments to train semantic segmentation models using all
available labeled source domain data while varying the number of labeled target
domain data, which are randomly selected as function of DA framework used
for training. Specifically, under UDA, we do not use any of the available labeled
target domain data and for SDA, we do not use any of the available unlabeled
target domain data.

We investigate a single semantic segmentation model architecture which is
trained using one of aforementioned DA frameworks. The model consists of two
sub-networks: a segmentation network to predict probability map of an input
eye image; and a fully convolutional discriminator network that differentiates the
probability map in target domain from those in the source domain. We adopt
adversarial training based strategy to train the segmentation network so as to
fool the discriminator network by producing distribution of probability maps,
which are invariant to the change in domain. The intuition for using adversarial
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training as a mechanism to adapt the probability map for target domain data
from the probability map of the source domain data is based on the fact that
both the source domain eye images and the target domain eye images exhibit
geometric and spatial structural similarities, for example, the ellipse contour of
eyes are always maintained [30].

For the training of semantic segmentation model under SSDA, a semi-supervised
loss is designed by generating pseudo-labels for eye regions in the unlabeled tar-
get images. Specifically, the discriminator network generates confidence score for
each pixel of eye image belonging to the source or the target domain. Only the
probability map of regions in the image that are identified as close to source
domain are treated as pseudo-labels and trained in the segmentation network
via a masked cross entropy loss [10]. This semi-supervised loss enables the model
to produce probability map of unlabeled target images close to the distribution
of source domain images. Note that although both our method and [10] utilize
the signals from discriminator to conduct semi-supervised loss, study in [10] only
considers leveraging labeled data and unlabeled data in a single domain. Differ-
ent from [10], the scope of SSDA in our study is to align the data distributions
between source and target domain while at the same time further boost the
performance for semantic segmentation by conducting semi-supervise learning
in the target domain.

Our contributions are summarized as follows:

– A practical framework to train models under DA by optimally utilizing lim-
ited images with annotations and the available unlabeled images in the target
domain.

– A systematic comparison of UDA, SDA and SSDA performance as function
of the number of available images (and labels) in the target domain.

2 Related Work

2.1 Semantic Segmentation of Eye Regions

Segmentation of periocular regions, including pupil, iris, sclera provide compre-
hensive information on eyes and is critical for gaze estimation [35]. A major-
ity of studies for eye segmentation have focused on segmenting single trait of
eye regions, i.e. sclera, iris, etc. Iris segmentation has been investigated for iris
recognition that can be used in personal identification and verification [3, 26].
In [14], ATT-UNet was proposed to learn discriminative features to separate
iris and non-iris pixels. Sclera segmentation is usually considered as a pre-
processing step for sclera-based recognition in applications of human identifi-
cation [16, 21, 39]. In [34], ScleraSegNet was proposed to achieve competitive
performance for sclera segmentation by using channel-wise attention mechanism.
However, limited works have focused on semantic segmentation of all eye regions,
i.e. pixel-wise classification due to the lack of availability of large-scale datasets
with labeled eye images [4,17,18]. Recently, the Open Eye Dataset (OpenEDS)
has been released to facilitate development of models for semantic segmentation
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of all eye regions [7]. Study in [7] trained a modified SegNet model [1] by in-
troducing a multiplicative skip connection between the last layer of the encoder
and the decoder network, to classify pupil, iris, sclera and background for each
pixel of a given eye image. More recently, few studies have investigated models
to segment all eye regions using the OpenEDS datasets, primarily focusing on
low computational complexity models [2, 11,23].

2.2 Domain Adaptation for Semantic Segmentation

Domain adaptation (DA) has been applied to develop semantic segmentation
models to ease the problem of data annotations, by aligning the feature or output
pixel-wise class distributions between the source and the target images [5,6,9,25].
Three different schemes of DA have been widely studied: UDA [8, 30], SDA
[20,28,33], and SSDA [10,36]. For these schemes, adversarial learning has become
a prominent approach in semantic segmentation, where the critical step is to train
a domain classifier or discriminator to differentiate whether the representation is
from source or target domain [6,9,32]. Due to the assumption of non-availability
of supervision from target domain annotations, many recent work has focused on
UDA by aligning distributions between source and target domain in feature space
[38], or learning discriminative representations in output space [30]. However,
UDA can fail to learn discriminative class boundaries on target domains [25].
SDA is applied when limited labeled target images are available. For example,
researchers in [28] proposed a hierarchical adaptation method to align feature
distributions between abundant labeled synthetic images in source domain and
insufficient labeled images in real-world scenario. In SSDA, in addition to a small
amount of labelled target images, a larger amount unlabeled target images is
available. However, most of the SSDA is applied in applications of classification
and object detection [25, 29, 37], SSDA for semantic segmentation has not been
fully explored. In this paper, we revisit this task and compare SSDA with SDA
and UDA under varying amount of training images in target domain.

3 Method

3.1 Overview

Fig. 1 provides an overview of our proposed model. Our goal is to perform DA
from all available labeled images in the source domain, Xs, to produce annota-
tions for unlabeled images in the target domain, Xt, by leveraging the limited
number of labeled images available in the target domain. We aim to investi-
gate how the performance on segmentation of unlabeled target domain images
is impacted by varying amounts of labeled target domain images.

Our proposed model consists of two sub-networks: a segmentation network
SS and a discriminator network D . For segmentation network, we consider the
mSegNet architecture for eye segmentation [7], which takes images of dimension
H ×W as input and outputs the probability map of dimension H ×W × K,
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Fig. 1: Architecture overview. Source and target images are passed to segmenta-
tion network to produce probability map. Segmentation loss Lseg is computed
given the probability map. A discriminator loss LD is calculated to train a
discriminator to differentiate whether each pixel is from source or target. An
adversarial loss Ladv is calculated on target probability map to fool the discrim-
inator. A semi-supervised loss Lsemi is calculated to boost the training process
if additional unlabeled target images are available. Blue arrows indicate forward
operation of the segmentation network, while orange arrows indicate that of dis-
criminator. Lsemi in green is applied when additional unlabeled target images
are available, while Lt

seg is applied when there are labeled target images.

where K is the number of semantic categories. For discriminator a.k.a. domain
classifier, we design a fully convolutional network, which takes probability maps
from segmentation network, and outputs a confidence map of dimension H×W .
This map indicates how confident the discriminator about each pixel in the input
image belonging to source or target domain.

During training, all labeled images in source domain Xs are used, and we
vary the number of labeled images available for training in the target domain
Xt. We denote pairs of images with the per-pixel annotations in Xs as {(Is, Ys)};
pairs of images with per-pixel annotations and the unlabeled images in Xt as
{(It, Yt)}, {It,u}, respectively.

Formally, the inputs for three frameworks for domain adaptation are:

– Unsupervised domain adaptation: Xs = {(Is, Ys)}; Xt = {It,u}
– Supervised domain adaptation: Xs = {(Is, Ys)}; Xt = {(It, Yt)}; |Ys| � |Yt|
– Semi-supervised domain adaptation: Xs = {(Is, Ys)}; Xt = {(It, Yt); It,u};
|Ys| � |Yt|, |It,u| � |It|
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3.2 Loss Functions

Segmentation Loss Segmentation loss is the cross-entropy loss that compares
probability map with the ground truth annotations.

Ld
seg = −

∑
h,w

∑
k∈K

Y
(h,w,k)
d log(SS(Id)(h,w,k)), d ∈ {Xs,Xt} (1)

Adversarial Loss Adversarial loss is used to train the segmentation network
to fool the discriminator, in order to make the distribution of target probability
map close to source domain.

Ladv = −
∑
h,w

log(D(SS(It))
(h,w)) (2)

Discriminator Loss Discriminator is trained to predict the domain label of
each pixel in the probability map. We use Yt = 0 for the source domain and
Yt = 1 for the target domain.

LD = −
∑
h,w

(1− Yt)log(1−D(SS(Is))
(h,w)) + Ytlog(D(SS(It))

(h,w)) (3)

Semi-supervised Loss Semi-supervised loss is used to enhance the training
process in a self-taught manner using unlabeled images in the target domain
[10,13]. The intuition is that the discriminator generates confidence score for each
pixel in the images, and those pixels considered close to source domain could be
used as additional information to train the segmentation network. Concretely,
we highlight regions in target images where the confidence score is above a
threshold, T and treat the probability maps from those regions as the pseudo
labels. Therefore, the semi-supervised loss is defined as:

Lsemi = −
∑
h,w

∑
k∈K

JD(SS(It,u))(h,w) > T K · Y (h,w,k)
t,u log(SS(It,u)(h,w,k)) (4)

where J·K is the indicator function, and Y
(h,w,k)
t,u = 1 if k = argmaxkSS(It,u)(h,w,k).

3.3 Objective Functions

In this section, we provide the objective functions for three schemes in domain
adaptation. Note that the objective function for discriminator is consistent across
unsupervised, supervised and semi-supervised domain adaptation. Hence we fol-
low Equation 3 to train the discriminator and focus more on objective functions
of semantic segmentation network SS below.



Domain Adaptation for Eye Segmentation 7

Unsupervised Domain Adaptation Only unlabeled images in Xt are avail-
able. The goal is to minimize the per-pixel classifier loss in the source domain.
Simultaneously, we want to make the distributions of probability maps in the
target domain to closely match the probability map of images in the source do-
main by training segmentation network and discriminator network in a min-max
game. The idea is for the segmentation network to be able to take advantage of
labeled source domain images for per-pixel classification of target domain im-
ages. Besides, semi-supervised loss in Equation 4 is used given the unlabeled
target images are available. The objective functions to train the SS network
under UDA can be written as:

LSS
UDA = Ls

seg + λadvLadv + λsemiLsemi (5)

where λsemi is the weight for the pseudo annotations generated from the dis-
criminator.

Supervised Domain Adaptation Only a small number of labeled images in
Xt are available. Segmentation network is trained to minimized the per-pixel
cross-entropy loss in both domains. The objective functions to train the SS
network under SDA can be written as:

LSS
SDA = Ls

seg + Lt
seg + λadvLadv (6)

Semi-supervised Domain Adaptation A majority of unlabeled images are
available in Xt, in addition to a small number of labeled images. The goal is
to take advantage of the unlabeled images in the target domain to generate
pseudo annotations and further improve performance for segmentation of target
domain images. As such, the semi-supervised loss is calculated as in Equation
4. The overall objective function to train the SS network under SSDA can be
written as:

LSS
SSDA = Ls

seg + Lt
seg + λsemiLsemi + λadvLadv (7)

3.4 Network Architecture

Segmentation Network The mSegNet network is a modified version of Seg-
Net architecture, wherein a multiplicative skip connection between the last layer
of the encoder and the decoder network is introduced, to estimate the proba-
bility maps for eye regions, including pupil, iris, sclera and background [7]. The
network consists a 7-layer encoder module and a 7-layer decoder module, made
up of convolutional layers with kernel-size 3× 3 and stride of 1. The number of
convolution channels in the encoder are 64, 64, 128, 128, 256, 256, 256, while
transposed convolutional layer is used in the decoder, which takes the number
of channels of 256, 256, 128, 128, 64, 64 and 4.
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Discriminator Discriminator is a fully convolutional network, and we follow
the setting in [30] to contain 5 convolution layers, each with kernel 4 × 4 and
stride of 2. The number of channels are 64, 128, 256, 512 and 1. Each convolution
layer is followed by a leaky-ReLU non-linearity with parameter 0.2 except for
the last layer. An up-sampling layer is added to the last convolutional layer to
resize the output to the dimension of input.

4 Experiments and Discussion

We begin by introducing the eye data sets in the source and the target do-
main. We then investigate how segmentation performance as measured by using
the mean intersection-over-union (mIoU) metric [15] is affected by varying the
amount of training data in the target domain. Next, we run t-SNE analysis [19] to
provide visualizations of the learned probability maps to illustrate the improve-
ments for segmentation of eye images in the target domain using the proposed
methods.

4.1 Datasets

Fig. 2: Top to bottom: examples of images from source and target domain.

Source Domain OpenEDS is a large scale data set of eye-images captured using
a virtual reality (VR) head mounted display mounted with two synchronized eye
facing cameras recorded at a frame rate of 200 Hz under controlled illumination
[7]. This data set was compiled from video capture of the eye-region collected
from 152 participants and consists of 12,759 images with pixel-level annotations
for key eye-regions: iris, pupil and sclera, at a resolution of 400 × 640 pixels.
Following [7], we use the training set of 8,916 images with the corresponding
annotations in OpenEDS as the source domain data.

Target Domain Target domain data was collected using a commercial VR
head mounted display that was modified with two eye facing cameras. The data
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set contains 4,629 eye images at a resolution of 400× 640 pixels and 4 semantic
categories are provided with pixel-level labels (pupil, iris, sclera and background).
For all the experiments we split the data set into images of 1,532, 500 and 2,597
as training, validation and test set. The results of proposed domain adaptation
scheme are reported on the test set. Fig. 2 shows some examples from the source
and target domains respectively.

4.2 Training Details

We use PyTorch to implement the proposed model [22]. ADAM optimizer [12]
is used to train both segmentation network and the discriminator network, with
initial learning rate of 0.0001, momentum 0.9 and 0.999 respectively, which is
decreased using a polynomial decay function with power of 0.9 [30]. We scale
the images to a resolution of 184 × 184 and train the models for 200 epochs
with batch size 8. A parameter search is conducted to find the optimal settings
of λadv, λsemi and T. As a result, we set λadv as 0.001, λsemi as 0.1, T as 0.8.
Algorithm 1 demonstrates the process of training models with varying amount
of target domain data.

Algorithm 1: Training Protocol

Input Source domain: Xs = {(Is, Ys)};
Target domain (UDA): Xt = {It,u} or
Target domain (SDA): Xt = {(It, Yt)} or
Target domain (SSDA): Xt = {(It, Yt); It,u};
N : # unlabeled images selected per iteration;
M : max iterations;

Model Segmentation network SS; Discriminator D;
for iteration = 1 to M do

Initialize SS with parameters that are pretrained on Xs

UDA Training SS and D with (Xs, Xt) via Eq. 5
SDA Training SS and D with (Xs, Xt) via Eq. 6
SSDA Training SS and D with (Xs, Xt) via Eq. 7
Random select N unlabeled images IN ∈ Xt where:
UDA Xt ← It,u ∪ IN
SDA Xt ← (It, Yt) ∪ (IN , YN ), YN is corresponding labels of IN
SSDA Xt ← ((It, Yt) ∪ (IN , YN ); It,u \ IN )

end

4.3 Results

Performance with Varying Amount of Training Data In Fig. 3, we chart
the segmentation performance, as measured using mIoU, for the three DA frame-
works as function of the number of target domain images available in the training
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data. We note that the mIoU for models trained under all three frameworks in-
crease and reach a plateau as more images in the target domain are available, the
extent of increase is much smaller for model trained under UDA. We note that,
with only 200 labeled images in the target domain, mIoU is improved by 5.4%
(from 81.7% in UDA to 87.1% in SDA) and 6.6% (from 81.7% UDA to 88.3%
SSDA), which affirms our hypothesis that even with limited number of labeled
target domain images, domain-specific information can boost the performance
for segmentation of images in the target domain.

We note that SSDA consistently outperforms SDA, since SSDA is able to
leverage the most available information, including images with annotations as
well as all the available unlabeled images. As can be seen from equations 6 and
7, the gain in the performance for SSDA relative to SDA is brought about by the
addition of adversarial loss as well as the semi-supervised loss from unlabeled
target images. As shown in Algorithm 1, however, as more target images with
annotations are provided to train the model, the amount of unlabeled target
images are decreased. Therefore, the performance gain brought by the adversar-
ial and semi-supervised loss from unlabeled target images is diminishing. This
explains the smaller performance gap between SDA and SSDA as more labeled
target images are available during training. We finally note that SSDA is able
to achieve a competitive mIoU of 89.5% with only 800 labeled target-domain
images (53.2% of total data). It is encouraging to observe that the proposed
SSDA can efficiently take advantage of insufficient labels while still producing
competitive performance on segmentation task.

Fig. 3: Performance of three domain adaptation frameworks (unsupervised, su-
pervised and semi-supervised domain adaptation) trained with varying amounts
of target images.



Domain Adaptation for Eye Segmentation 11

Performance with All Training Data In Table 1, we summarize the perfor-
mance for all the three frameworks for the case when all training images and the
corresponding annotations in target domain are used. Two baseline models are
being compared: 1) Source Only: we train the segmentation model on source
domain data. 2) Target finetuning: we train the segmentation model on source
domain data and then finetuned the segmentation model using the available la-
beled target domain data. By comparing UDA with Source only, the adversarial
loss directly brings an improvement of 15.2%, from 66.3% of baseline to 81.5% for
UDA. With additional labeled target domain data available, by comparing SDA
and SSDA with target finetuning, mIoU is increased by 0.2% and 0.5%, respec-
tively. Comparing all the domain adaptation based models, given the context of
additional labels, mIoU is increased by 8.3%, from 81.5% for UDA to 89.8% for
SSDA. Not only does SSDA consistently performs better than SDA over varying
number of labeled target domain training images, SSDA also achieved slightly
better performance metrics than SDA (0.3%) and target finetuning (0.5%) when
all target domain labeled images are available.

Table 1: Results of models trained with all target images (# images = 1,503).
Models Overall Pupil Iris Sclera Background

Source only 66.3 60.7 66.4 48.8 89.5
Target finetuning 89.3 89.6 90.6 79.0 97.5

UDA 82.5 82.3 84.0 64.0 94.1
SDA 89.5 89.8 90.7 78.8 97.8

SSDA 89.8 90.0 90.3 79.3 97.9

Visualization of Segmentation Results Fig. 4 shows segmentation results
from models trained under different frameworks. Note that the ground truth la-
bels in the target domain are missing fine-grained boundary, i.e. detailed bound-
aries of sclera. Domain adaptation is able to transfer the knowledge from source
domain with high quality labels to target domain where both quality and quan-
tity are limited, which improves segmenting detailed geometry such as sclera in
the target images.

Visualization of Feature Clustering Fig. 5 shows the T-SNE [19] of the
embeddings of the per-pixel probability maps of training data in source and
target domain. The “perplexity” parameter for T-SNE was set as 20. Qualitative
results show that with domain adaptation applied, the distributions of source
and target domain probability maps overlap closely.
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Target Image GT Source Only UDA SDA SSDA

Fig. 4: Examples and segmentation results from different models. From left to
right: target images, ground truth, source only, predictions of UDA, SDA and
SSDA. From top to bottom: regular-opened eyes, half-opened eyes, long eye-
lashes, eyeglasses, dim light.

Source only UDA SDA SSDA

Fig. 5: T-SNE visualization. Blue: source domain. Red: target domain.
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5 Conclusions

This paper considers the problem of domain adaptation for eye segmentation,
under the setting where a small amount of labeled images and a majority of
unlabeled images in the target domain are available. We systematically compare
the performance of semantic segmentation models trained under unsupervised
(UDA), supervised (SDA) and semi-supervised domain adaptation (SSDA), as a
function of the number of labeled target domain training images. Results show
that SSDA is able to improve mIoU from 81.7% of UDA to 88.3% when only 200
labeled target domain images are available for training. Furthermore, with 50%
of labeled target domain images being used, we are able to achieve a competitive
mIoU of 89.5% using SSDA. In conclusion, results demonstrate the benefit to
annotate a small number of target domain images to effectively perform domain
adaptation. We hope that presented approaches would be useful for eye tracking
practitioners that employ segmentation of periocular regions in their eye track-
ing pipelines to improve data quality of obtained gaze positional data, which is
important for providing the broadest possible field of eye tracking-driven appli-
cations.

In our future work we plan to explore what aspects of eye tracking data
quality (e.g., spatial accuracy, spatial precision, spatial resolution, data loss,
etc.) are affected by segmentation of periocular regions and to what degree.
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